تولید خودکار دادگان آزمون به کمک شبکه عصبی

Authors

رضا ترکاشون

دانشکدهمهندسیکامپیوتر، دانشگاه علم وصنعت ایران محمدرضا کنگاوری

دانشکدهمهندسیکامپیوتر، دانشگاه علم و صنعت ایران

abstract

چکیده یکی از مراحل مهم آزمون نرم افزار شئ گرا، آزمون مستقل اشیا است.آزمون مستقل اشیا با دو مشکل روبه رو است: اولاً شئ مورد فراخوانی ممکن استروش هایی از اشیا دیگر را فراخوانی کندودر نتیجهبررسیمستقلآن ممکن نباشد. ثانیاً روش های فراخوانی شده ممکن است زمان بر باشند و باعث شوندآزمون شئ مورد نظر طولانی شود. یک راه حل برای رفع دو مشکل فوق، استفاده از اشیا جاعل است. اشیا جاعل روش-های مورد فراخوانی را شبیه سازی کند. اشیا جاعلی که تاکنون معرفی شده اند مبتنی بر جدول هستند و خود از مشکلات زمان بر بودن و مهمتر از آن عدم توانایی در شبیه سازی دقیق روش ها رنج می برند.از سوی دیگر دادگان آزمون کم می باشد وتولید خودکار موارد آزمون با حداکثر میزان پوشش مسیرهای اجراییدر برنامه های مورد آزمون مورد توجه بوده است. این مقاله شامل دو بخش پیشنهادی است، در بخش اول مقاله با استفاده از شبکه های عصبی عملکرد توابع خطی درون برنامه ها شبیه سازی می شود. همچنین با به کارگیری الگوریتم ژنتیک، بهترین زیر مجموعه از ورودی ها برای آموزش شبکه عصبی را از بین مجموعه بزرگی از ورودی ها که به صورت تصادفی ایجاد شده اند، در بخش دومتعیین می شود. در این تحقیق یک شئ جاعل مبتنی بر شبکه عصبی پیشنهاد می گردد که هر دو مشکل اشیا جاعل مبتنی بر جدول را رفع کند. آزمایش ها روی توابع ریاضی، منطقیوگسستهنشان می دهد کهروشپیشنهادی در هردو بخش، عملکرد مناسبی داشته اند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تولید خودکار دادگان آزمون به کمک شبکه عصبی

چکیده یکی از مراحل مهم آزمون نرم‌افزار شئ‌گرا، آزمون مستقل اشیا است.آزمون مستقل اشیا با دو مشکل روبه‌رو است: اولاً شئ مورد فراخوانی ممکن استروش‌هایی از اشیا دیگر را فراخوانی کندودر نتیجهبررسیمستقلآن ممکن نباشد. ثانیاً روش‌های فراخوانی شده ممکن است زمان‌بر باشند و باعث شوندآزمون شئ مورد نظر طولانی شود. یک راه‌حل برای رفع دو مشکل فوق، استفاده از اشیا جاعل است. اشیا جاعل روش-های مورد فراخوانی را شب...

full text

بهبود عملکرد الگوریتم خوشه‌یابی خودکار تصاویر رنگی به کمک پیش‌پردازش با شبکه عصبی خودسامانده (SOM)

با توجه به کاربرد فراوان مسئله خوشه‌یابی داده‌ها به‌عنوان یکی از مسائل مهم در مبحث بازشناسی الگو، زمینه‌های تحقیقاتی متنوعی از جمله خوشه‌یابی تصاویر به این موضوع اختصاص یافته است. اکثر روش‌های مطرح‌شده برای حل مسئله خوشه‌یابی تصاویر، مبتنی بر الگوریتم‌های هوش‌جمعی می‌باشد. با توجه به حجم بالای داده ورودی در این الگوریتم‌ها (برابر تعداد پیکسل‌های تصویر)، زمان محاسباتی زیادی صرف حل مسئله می‌شود ب...

full text

تشخیص خودکار خوشه های میکروکلسیفیکاسیون به کمک تبدیل موجک و شبکه های عصبی

در این مقاله، یک سیستم CAD به منظور شناسایی و تشخیص خوشه های میکروکلسیفیکاسیون در تصاویر ماموگرافی معرفی شده است. الگوریتم معرفی شده مرکب از سه مرحله اساسی است. در مرحله اول، تبدیل موجک روی تصاویر ماموگرافی اعمال شده و دو ضریب موجک به همراه دو ویژگی آماری به عنوان ویژگی های متمایز کننده پیکسل ها از نظر تعلق به یک دانه میکروکلسیفیکاسیون استخراج می گردد. سپس با استفاده از یک شبکه عصبی، دسته بندی ...

full text

تصحیح خودکار غلط های تایپی فارسی به کمک شبکه عصبی مصنوعی ترکیبی

Automatic correction of typos in the typed texts is one of the goals of research in artificial intelligence, data mining and natural language processing. Most of the existing methods are based on searching in dictionaries and determining the similarity of the dictionary entries and the given word. This paper presents the design, implementation, and evaluation of a Farsi typo correction system u...

full text

تولید خودکار نوای گفتار به کمک مدل آمیختار عصبی-آماری با امکان انتخاب واحد در سنتز

در این مقاله با هدف ایجاد بهبود در عملکرد اولین ویرایش از سیستم تبدیل متن به گفتار طبیعی ارایه شده برای زبان فارسی، که در آن از یک شبکه عصبی بازگشتی برای تولید همزمان عوامل نوای گفتار (الگوی فرکانس گام، دیرش، انرژی و درنگ) و نیز سنتزکننده «مدل هارمونیک + نویز» با دادگان تک واحدی از دو واجی ها، برای تولید گفتار استفاده شده بود، چگونگی به کارگیری یک مدل آمیختار عصبی- آماری برای...

full text

تصحیح خودکار غلط های تایپی فارسی به کمک شبکه عصبی مصنوعی ترکیبی

ارایه راهی برای تصحیح غلط های املایی نگاشته شده توسط انسان یکی از اهداف مورد توجه در دانش هوش مصنوعی، متن کاوی و پردازش زبان طبیعی است. بیشتر روش های موجود برای تصحیح غلط های املایی بر پایه الگوریتم های جست وجو در فرهنگ واژگان و تعیین نسبت شباهت واژگان درست موجود در فرهنگ واژگان با واژه نادرست مورد نظر کار می کنند. در این پژوهش طراحی، پیاده سازی و ارزیابی یک مصحح املایی به کمک شبکه های عصبی مصن...

full text

My Resources

Save resource for easier access later


Journal title:
علوم و فناوری های پدافند نوین

جلد ۲، شماره ۲، صفحات ۸۳-۹۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023